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A guide to accurate reporting in digital image processing – can
anyone reproduce your quantitative analysis?
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ABSTRACT
Considerable attention has been recently paid to improving
replicability and reproducibility in life science research. This has
resulted in commendable efforts to standardize a variety of reagents,
assays, cell lines and other resources. However, given that microscopy
is a dominant tool for biologists, comparatively little discussion has
been offered regarding how the proper reporting and documentation of
microscopy relevant details should be handled. Image processing is a
critical step of almost any microscopy-based experiment; however,
improper, or incomplete reporting of its use in the literature is pervasive.
The chosen details of an image processing workflow can dramatically
determine the outcome of subsequent analyses, and indeed, the
overall conclusions of a study. ThisReviewaims to illustrate howproper
reporting of image processing methodology improves scientific
reproducibility and strengthens the biological conclusions derived
from the results.

KEY WORDS: Accurate reporting, Data reproducibility, Image
analysis, Image processing, Microscopy

Introduction
Image processing and analysis have become an indispensable
component of the biology toolbox. There are several important
forces that drive this trend, including (1) the increasing complexity
and volume of modern imaging data (Ouyang and Zimmer, 2017);
(2) the emphasis placed by journals and funding agencies on
quantitative, rather than qualitative, data interpretation; and (3) the
efforts by the biological community to reliably share data [e.g. the
brain connectome (Dance, 2015), or the OMERO project (Allan
et al., 2012)]. Collectively, the ubiquitous reliance on quantitative
imaging as a biological tool highlights an important problem that
has remained inadequately spotlighted until recently – the lack of
accurate and sufficient reporting of the processing steps required for
image analysis (Marques et al., 2020).
An image file contains information that can yield important

insights into a wide range of biological structures and processes.
Unfortunately, any image is intrinsically an imperfect representation
of the object(s) being studied (Aaron et al., 2019; Sluder and Wolf,
2013). The complexity of a biological specimen and its interaction
with light often further degrades the fidelity of how the biological
reality is represented in the acquired images (Booth and Patton,
2014; Ji et al., 2010) by distorting the image data, resulting in
suppressed image signal and resolution.
Image processing is the vital intermediary step that aims to

isolate and/or emphasize the desired signals in a raw acquired

image before eventual analysis (see Fig. 1A). In this discussion,
we make a distinction between image processing and image
analysis, whereby the latter comprises a vast set of diverse
approaches to extract biologically meaningful, quantitative
measurements from a dataset. Image processing, on the other
hand, serves to digitally transform an acquired dataset by
enhancing or isolating signals of interest and/or suppressing
other signals and noise that will otherwise prevent accurate
analysis. Furthermore, as indicated in Fig. 1A, there are often steps
that are required to be taken before image data can be properly
processed, termed pre-processing. Such steps generally do not
serve to enhance particular features in an image per se, but
rather correct for imperfections commonly encountered in imaging
systems. This may include, for example, corrections for proper
color channel registration (Zhang and Carter, 1999) or microscope
stage drift (Lee et al., 2012).

The myriad of available image processing and analysis software
packages enable biologists to perform highly complex digital
operations with ease. However, herein lies the ‘double-edge
sword’. While easy access to such algorithms is empowering, their
foundations are grounded in complex mathematical concepts that
may be unfamiliar to many researchers. An ill-advised application
of these algorithms can drastically change the underlying image
data in unanticipated and counterproductive ways. Yet, many
image processing software programs, especially commercial
solutions, provide an easy ‘one-click’ route to unwittingly
alter images with little regard to understanding the resulting
effects on the data, as long as the end justifies the means – the
background is silenced, the image is sharpened, and the desired
objects are segmented. This conceptual opacity, combined with
the lack of safeguards in implementation, has perpetuated the
notion that image processing requires little thought, and that
the underlying details of digital operations can be ignored and
go unreported.

It is important to point out that digitally processing raw images
for later analyses is not intrinsically unethical; indeed, good use of
processing techniques can be integral to achieving the experimental
goals (Miura and Sladoje, 2020; Miura and Tosi, 2017). What
becomes unacceptable, usually unintentionally, is the failure to
document the processing steps taken. Proper reporting would allow
possible contradictory findings to be reconciled by retracing the
processing steps, even if a published conclusion is erroneous due to
an ill-advised processing workflow. Furthermore, many image
processing techniques, while entirely justifiable as a means to
accurate quantitative analysis, are not appropriate to generate
‘improved’ images for display. Indeed, the displayed images
themselves should be presented in a format that is as close as
possible to the original data, with any alterations consistently
applied and carefully disclosed. Finally, there do exist certain
manipulations, such as image ‘cutting and pasting’, the use of lossy
compression, or any alteration that is applied to a user-selected
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sub-region of an image that will nearly always be inappropriate
regardless of their application (Cromey, 2010). In any case, proper
documentation of all digital alterations serves as a traceable means
to identify inappropriate manipulations.
Our goal here is not to exhaustively discuss the many image

processing methods available, as this is a topic far too vast for the
scope of this paper. Many excellent and comprehensive treatments
on the principles behind image processing are available for review
(Bhabatosh and Dutta, 2011; Burger and Burge, 2013; Ekstrom,
2012; Gonzalez, 2002; Nixon and Aguado, 2019; Pitas, 2000;
Szeliski, 2010; Wu et al., 2010). Likewise, it is not our goal to
discourage experimenters from performing any particular
technique, so long as such use is well-understood and
scientifically justified. We aim to provide instructive examples
that illustrate how various image processing operations, as outlined
in Fig. 1A, can impact the resulting image data, and how their
inaccurate and insufficient documentation impede or even prevent
reproducibility. Additionally, we will provide the readers guidance
and examples for proper reporting.

Reproducibility in image processing – a simple example
Reporting image-processing methodology inaccurately and/or
incompletely can easily result in findings that cannot be
reproduced or reconciled – often because of a seemingly trivial
omission in detail. This can lead to contradictory conclusions from
multiple researchers, when in fact, the true inconsistency is one of
data processing. As a simple theoretical example, consider Fig. 1B,
which shows a fluorescence image of bacterial colonies expressing a
reporter of interest. Two different experimenters were each
interested in reporting the size distribution of these colonies from
the image. However, high background signal and noise were
deemed to likely bias this measurement. Therefore, both
experimenters decide to first employ a processing method, and
report it as, ‘Prior to analysis, images were background-subtracted,
followed by Gaussian smoothing, and automatic intensity threshold
calculation in FIJI’.

While seemingly a comprehensive description of a reasonable
approach, it is in fact insufficient to reproduce the true workflow. To
see why, note the bar graph in Fig. 1C that reports the results of

0

20

40

60

80

100

Background radius: 5 pixels
Smoothing kernel: 1 pixel
Threshold: Otsu method

Background radius: 10 pixels
Smoothing kernel: 2 pixels
Threshold: triangle method

A

Image processing – a necessary intermediate step

Acquisition Pre-
processing

Signal 
enhancement

Feature 
detection Segmentation Analysis

• Background subtraction
• Denoising
• Deconvolution

• Intensity threshold
• Edge detection

• Morphometric 
   filtering
• Watershed

B C

Co
lo

ny
 a

re
a 

(p
ix

el
 2

)

Experimenter A Experimenter B

Fig. 1. The importance of image processing in imaging experiments and its impact on final results. (A) Image processing is necessary in nearly any
microscopy experiment, occurring between the image acquisition stage and any subsequent analysis steps. Image processing can include feature enhancement/
detection and/or segmentation operations. Each of these image processing steps can alter the final results and skew data interpretation. (B) Example
fluorescence image of bacterial colonies is shown (taken from freely available FIJI sample data, see https://imagej.net/Samples). (C) Two researchers subjecting
the image in B to different background subtraction, Gaussian de-noising, and automatic thresholding operations arrive at considerably different estimates of
bacterial colony size (error bars represent s.e.m.).
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average colony size (with s.e.m.) as determined by each experimenter.
While both followed the same general steps as reported, the results
from each researcher differ by more than three-fold.
As may be surmised, the source of this inconsistency lies in the

details. While Experimenter A used a background subtraction radius
(Sternberg, 1983) and Gaussian smoothing (Nixon and Aguado,
2019) kernel size of 5 and 1 pixels, respectively, experimenter B
used 10 and 2 pixels. And in one case Otsu’s automatic threshold
(Otsu, 1979) was applied, while the triangle method (Zack et al.,
1977) was used in the other. Otsu’s method serves to minimize the
variance in intensity between above- and below-threshold pixels,
while the triangle method finds a suitable threshold based on how
pixel intensities are distributed between the most common and
highest values, respectively. Either approach may be technically
justified; but unfortunately, such specifics can often be deemed too
nuanced or unimportant to report in a manuscript with a tightly
controlled word limit. As a result, even relatively small unreported
differences in processing methodology can translate into apparently
inconsistent results with multi-fold differences. The two experimenters
may draw quite different conclusions based on these competing results,
each claiming, for example, a significantly different growth rate for the
bacteria. However, proper documentation and reporting will allow
these two disparate results to be easily reconciled.

Image enhancement
The above example describes two common image enhancement
steps – background subtraction, and image de-noising. Both
techniques are designed to isolate the signal of interest from the
rest of the image. To better understand why image processing is
often necessary prior to analysis, it is important to understand what
factors contribute to image degradation. These factors include:
(1) optical diffraction that ‘blurs’ the image of an observed object;
(2) extraneous or uninformative signals not associated with the
structure of interest, referred to as ‘background’; and (3) random
intensity fluctuations, collectively described as noise (Lambert and
Waters, 2014). Overall, biological, optical and electronic factors
will always work in concert to degrade an image. The choice of
strategy for recovering or amplifying the signal of interest, and how
it is applied, can substantially affect the outcome of any subsequent
analysis. There are image processing techniques designed to address
each of these factors, which will be briefly surveyed in the following
sections. We will also articulate why complete reporting of their
implementation is critical.

Background subtraction
Background can refer to any detected but non-informative signal,
whose presence may render subsequent analysis inaccurate or
otherwise misleading. There are many sources that can contribute to
background signals: (1) fluorescence generated from molecules that
are not the reporter of interest (e.g. riboflavin in cell culture
medium) (Aubin, 1979); (2) out-of-focus signals that may emanate
from the fluorescent reporter molecules, but are too far away from
the microscope focal plane to form a suitable image; and/or (3) non-
specific signals, which emanate from the reporter of interest, and
may be located in the focal plane, but are not associated with the
biological structure of interest (e.g. non-specific binding of a
secondary antibody). Regardless of their source, background signals
will often skew the results of many image analysis techniques.
Fortunately, there is a retinue of methods that can estimate and

remove some unwanted background signals from an image
(Gonzalez, 2002). These estimates, however, almost always rely
on one or more limiting assumptions. Thus, it is paramount to

clearly describe any background removal technique when reporting
results, as illustrated with an image of fluorescently labeled viral
particles in a cell (Fig. 2A).

To accurately measure the fluorescence intensity of individual
viral particles, it is almost certainly necessary to employ some
background subtraction method. There are many viable options for
background subtraction, including (1) Fourier domain filtering
(Nixon and Aguado, 2019), (2) Gaussian smoothing (Nixon and
Aguado, 2019), or (3) ‘rolling ball’ subtraction (Sternberg, 1983).

Fig. 2C–E show the estimated image background signal (as surface
plots) calculated from each of these methods, respectively. Note that
the Gaussian smoothing and rolling ball filters each had a 5-pixel
radius, and the Fourier frequency filter removed the first five
frequency components (including the offset). Then, the total pixel
intensity within the box indicated in Fig. 2A was summed for each
background subtraction scenario as a measure of the total fluorescence
signal associated with the encompassed single viral particle.
Strikingly, a 75% variation in total intensity among the differently
processed images is observed (Fig. 2B). Therefore, simply indicating
that an image was ‘background-subtracted’ is not sufficiently specific
to render a workflow reproducible; rather, explicitly stating the chosen
method with the accompanying parameter values is required.

Image denoising
As outlined previously, noise is inevitable in any imaging system.
While every effort should be made to maximize the signal-to-noise
ratio (SNR) of an image, practical considerations, such as
fluorophore choice, imaging speed, duration and phototoxicity,
can force experimenters to compromise (Galdeen and North, 2011;
Jonkman et al., 2020; North, 2006). This can render subsequent
measurements more difficult. Fortunately, image analysis can be
aided by denoising methods. While such algorithms never remove
noise entirely from an image, they can often substantially reduce its
contribution (Fan et al., 2019), albeit often with a loss in image
detail. How, and to what extent this is done can vary widely from
one technique to another – potentially producing widely variable
results, thus reinforcing the importance of proper documentation.

The noise component of an image is often assumed to vary more
from one pixel to the next than does the structure itself. Thus, many
denoising algorithms force each pixel within an image to be more
similar in intensity to its neighbors. As an example, a noisy image of
a neuron is shown in Fig. 3A; it was subjected to Gaussian
smoothing (Nixon and Aguado, 2019), median filtering (Huang
et al., 1979) and non-local means denoising (NLMD) (Buades et al.,
2011), with end-results shown in Fig. 3B–D, respectively. The
Gaussian smoothing and median filtering each used a filter radius of
6 pixels. NLMDwas used as implemented in FIJI, with a smoothing
factor of 1 and automatic estimation of sigma parameters. In Fig. 3E,
an intensity profile plot is shown for the same region in each image,
indicated by white lines, for the original data and for the indicated
denoising method. It is useful to compare areas primarily with and
without the signal of interest, indicated by the yellow and light blue
areas, respectively.

Note that Gaussian smoothing results in less noise than the
median filter in areas of low signal (light blue areas). However, it
also tends to reduce the intensity and broaden the apparent axon
widths by blurring their edges (yellow areas), as denoted by the
arrows. The median filter results in greater pixel variation in the
dimmer areas of the image, but with better intensity preservation
and sharper axon edges.

NLMD (shown in Fig. 3D) can often circumvent the limitations
of the Gaussian and median filtering methods, as it does not assume
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that neighboring pixels need to have similar intensity. But because
of its ‘non-local’ nature, NLMD can give different results depending
on whether an image is cropped – another potential source of
irreproducibility.

Deconvolution
Background signal and noise can represent formidable foes in image
analysis. But diffraction has historically been the ultimate limiter of
image quality. Any acquired image will be the convolution of the
structure being observed and the point spread function (PSF) of the
microscope (Sibarita, 2005). Deconvolution techniques therefore
attempt to reverse the effects of diffraction by approximating a real
structure, given (1) a captured image and (2) a known or estimated
PSF. The desired result is a crisper image whose details may better
facilitate image analysis. The sharpened image, however, can only
be an estimate. The accuracy of this estimate is further complicated
by the extent of image noise and the accuracy of the assumed or
measured PSF. In practice, deconvolution algorithms must balance
image deblurring and noise – increasing the former will
unfortunately increase the latter. Many algorithms, therefore,
incorporate one or more user-defined parameters that attempt to
optimize that balance.

Deconvolution techniques can be grouped into ‘direct’ or
‘iterative’ algorithms. A common example of a direct method is
based on a Wiener filter (Gonzalez, 2002; Sekko et al., 1999). The
Richardson–Lucy algorithm, on the other hand, is a common
iterative scheme (Lucy, 1974; Richardson, 1972), whereby an
experimenter specifies the number of cycles to perform. In any study
that makes use of deconvolution, the specific algorithm employed
should be cited. In addition, reporting the user-defined parameters is
equally vital to ensure reproducibility. To illustrate this point,
consider the image in Fig. 4A, which shows mitochondria in several
HeLa cells. The images in Fig. 4B–E show an enlargement of the
area denoted by the white box in Fig. 4A and indicate the results of
four deconvolution attempts. Each image was obtained using the
same Richardson–Lucy algorithm. The only variation between each
image is the number of user-defined iterations, with Fig. 4B–E
corresponding to 5, 10, 25 and 75 iterations, respectively. This
example illustrates the marked effect of iteration number on a
deconvolved image. Note that, particularly in Fig. 4E, the chosen
number of iterations is too large, as unintended structures have
become apparent in dim regions of the image. But a complete
reporting of this processing step can be vital in identifying such
errors. More generally, the chosen number of deconvolution
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Fig. 2. Background subtraction. (A) Image of a cell infected with fluorescently labeled viral particles, taken from FIJI sample data (https://imagej.net/Samples).
(B–E) The total summed pixel intensity of the single virus encompassed by the white box in A is plotted (B) after application of three background-removal
techniques, specifically, Fourier-based filtering – with the first five frequency components removed (C), as well as Gaussian smoothing (D) and rolling minimum
methods (E), both of the latter using a 5-pixel radius kernel size. Note that the orientation surface plots in C–E is rotated relative to the original data. An asterisk (*)
indicates the corresponding lower left corner in each image C–E relative to the same indicator in A. The apparent inconsistency in integrated intensity shown in B
can be attributed to the different estimated image backgrounds calculated from each method shown in C–E.
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iterations can have significant effects on downstream analyses; in
this example, measurements of mitochondrial size, shape, and
number can all be expected to vary depending on precisely how the
preceding deconvolution was implemented. However, this image
processing detail is often omitted in published studies.
Deconvolution can be a conceptually difficult image-processing

task for many researchers, in part due to its mathematical
complexity. Additionally, commercial implementations may not

disclose a rigorous description of the exact algorithm used for
proprietary reasons, or a clear explanation of the user-defined
parameters. This is compounded in the case of iterative algorithms,
where the optimal number of deconvolution iterations may not be
clear. Some implementations make use of a particular image quality
criterion that, when met, would terminate the operation (Laasmaa
et al., 2010). In any case, researchers should obtain as much
information about the chosen deconvolution algorithm as possible
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Fig. 3. Image de-noising. (A) Image of a fluorescently labeled neuron (taken from FIJI sample data; https://imagej.net/Samples) with relatively low signal-to-noise
ratio (SNR). (B-D) The image in A is subjected to three denoising techniques – Gaussian smoothing (B), median filtering (C), and non-local means (D).
(E) Pixel intensity profiles across the areas indicated by thewhite line in each image are shown, with dark and bright regions of the image denoted by light blue and
yellow areas in the graphs, respectively. Parameters for each denoising method are listed in the graph. Arrows indicate the apparent variation in structure
due to different denoising methods.
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from their microscopy facility. At a minimum, any utilized
commercial software tools should be clearly listed (with version
number), along with all the requisite user-defined parameters. While
details on commercial implementation of deconvolution may be
difficult to obtain, there are other open source options available (Sage
et al., 2017; Sun et al., 2009) with more transparent descriptions.

Feature detection and object segmentation
The image enhancement techniques described above can be
powerful techniques to reduce unwanted signals and noise, and to
amplify signals of interest. However, this may only be an initial step
in an image processing workflow. Distinguishing pixels that
primarily contain signal of interest – termed foreground – from
those that do not is often the next logical processing step toward
eventual analyses.

Intensity threshold
The simplest way to identify foreground pixels is to select a
minimum threshold intensity value, although other strategies exist
(Maini and Aggarwal, 2009). Manual selection of a threshold value
is often used, based on a visual inspection of the resulting
foreground pixels, but this approach can be prone to user-bias. To
minimize such bias, automated threshold methods, which do not
rely on human perception, are common alternatives.
Few topics have seen as wide a variety of implementations as

automated intensity threshold calculation. For example, FIJI
(Rueden et al., 2017; Schindelin et al., 2015; Schneider et al.,
2012) currently offers no fewer than 17 different methods to
automatically calculate an image intensity threshold with a diversity
in results (Fig. 5). Fig. 5A features an image of fluorescently labeled
intracellular vesicles after background subtraction (with rolling ball
subtraction, 5-pixel radius) and denoising (using median filtering,
3-pixel radius). Three different automatic thresholding techniques
(Kittler and Illingworth, 1986; Otsu, 1979; Prewitt and
Mendelsohn, 1966), each included in ImageJ/FIJI, were applied
with results displayed in Fig. 5B–D, respectively. White pixels
denote foreground, while black pixels correspond to those pixels
deemed not to contain signal of interest. Clearly, different
thresholding techniques return very different sets of foreground
pixels. This is primarily due to the unique assumptions of each
method about the underlying pixel intensity distribution.
As suggested before, microscopy facility staff can often be the best

initial resource in selecting an appropriate threshold application

technique. However, describing the method being used and its
associated parameters is of even greater importance. Even if a
threshold method is poorly chosen, documenting its use can prompt a
manuscript reviewer to suggest a different method prior to publication,
and/or resolve any issues of reproducibility after publication.

Object segmentation
Object segmentation, in many instances, can be thought of as a final
processing step that groups adjacent foreground pixels into discrete
objects for analysis. Despite the apparent simplicity of this task,
there are important details that will affect the outcome. Most
fundamentally, there are multiple ways to define ‘adjacent’ in this
context. For example, pixels can be joined into an object if they
share a common edge (4-connectivity rule), or if they share either an
edge or a corner (8-connectivity rule) (He et al., 2017). While
seemingly inconsequential, this difference can have a large impact
on the measured number, size, and shape of objects – particularly if
those objects are comprised of relatively few pixels.

Once pixels have been grouped, further refinements are often
made. Spuriously bright pixels are often misclassified as objects
but tend to be of different size or shape from the objects of
interest. Thus, it is common to simply not consider any objects
that fall outside acceptable bounds of shape and size. Such
operations are not inherently unethical, so long as they are well-
justified based on what is known about the biological
structure(s), and so long as they are applied in a consistent
fashion. But most importantly, such morphological filtering
should always be noted with a complete description of all
parameters that were considered.

Binary operations can also refine segmented objects. These
operations represent image processing techniques that are reserved
only for binary images – that is, images with only two possible
intensity values, which typically denote whether a pixel is above or
below a specified threshold, respectively. For example, binary
erosion followed by dilation – called ‘image opening’ – can be
useful to remove small unwanted objects produced by spurious
signals. Similarly, binary dilation followed by erosion – or ‘image
closing’ – can be useful to fill holes within objects that happen to
have areas of relatively dim signal (Gonzalez, 2002). Watershed
operations can separate objects that share a common border
(Roerdink and Meijster, 2000). Although each of these processing
steps aim to improve upon the initially segmented objects, many
results will depend heavily on their precise implementation.

A B C D E

Deconvolution iterations

Fig. 4. Image deconvolution. (A) An image of fluorescently labeled mitochondria (taken from FIJI sample data; https://imagej.net/Samples) was subjected to
Richardson–Lucy deconvolution using an assumed point spread function (PSF). (B–E) Effects of deconvolution of the area indicated by the white box in
A after 5 (B), 10 (C), 25 (D), and 75 (E) iterations of the same Richardson–Lucy deconvolution algorithm are shown.
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This can be seen by continuing to consider the images in Fig. 5.
Assuming the threshold technique represented in Fig. 5C, with the
enlarged view shown in Fig. 5Ci (Otsu, 1979), is deemed optimal,
measuring the average area of each vesicle may seem to be a
straightforward task and not subject to hazards of irreproducibility.
However, the removal of specious small objects and apparent
vesicle aggregates may be critical to avoid skewing these results.
One experimenter may choose to use image opening and a
watershed operation to accomplish this task, which we term
Segmentation Method 1. Another experimenter may simply apply
a maximum object area and minimum object circularity to select
putative vesicles, termed Segmentation Method 2. While either
approach may be appropriate, the segmented objects derived from
eachmethod are notably different, as illustrated in Fig. 5Cii and Ciii.
It should then come as little surprise that when computing the
average vesicle area, a 75% difference in outcome is found between
these two methods (Fig. 5E). Importantly, differing results would be
expected even if individual parameters within each method are
varied. For example, varying the acceptable bounds of object
circularity in Method 2 is likely to change the quantitative outcome.
Thus, even when a pair of images is subject to identical background
subtraction, image denoising and automated threshold application,
the analytical result can still vary by a surprising amount due to
differences in object segmentation and refinement.
An often overlooked, yet vital, aspect of proper reporting of

image processing is the sequence in whichmultiple tasks are applied
to an image. For example, applying a rolling ball background
subtraction, followed by median-filter denoising will produce a
different image from the one obtained with these same steps
performed in the reverse order. As such, differences in the processed
image will almost certainly affect any later segmentation and,
ultimately, an analysis outcome. Thus, when describing any image
processing workflow, careful attention should be paid to denote

both the details of all individual steps, as well as the precise order in
which they were applied. We have included a user-fillable form (see
Table S1) aimed at aiding readers to properly document their image
processing workflows.

The various examples shown here serve to illustrate how
seemingly inconsequential details in the implementation of image
processing can have dramatic effects on a final image analysis
outcome. A common reason these details are deemed unimportant is
largely due to the fact that many imaging experiments are
comparative in nature. As such, it can be tempting to presume that
the overall difference in outcome between experimental and control
samples will be preserved, regardless of exactly how each image is
processed and analyzed, so long as such workflows are applied
consistently. It must be stressed, however, that this assertion cannot
be assumed to be true. The preceding examples indicate that varying
even one parameter in a single processing step can produce
unintuitive and non-linear effects in the final outcome. Thus,
extending such variability over several steps in a workflow would
therefore render any changes in final results wholly unpredictable.

Perspectives and conclusions
As described here and elsewhere, digital image processing is an
integral step toward quantitative image analyses. In fact, judicious
utilization of these methods – not avoidance of them out of
indiscriminate ethical concern – is often required for the success of
accurate quantitative image analysis (Miura and Sladoje, 2020). A
more insidious problem, however, is the lack of proper reporting of
these essential digital operations in the literature (Marques et al.,
2020). The preceding examples demonstrate the often-significant
effect on the analysis outcome as a result of inconsistently applying
seemingly insignificant image processing factors. Promoting
accurate and sufficient documentation of image processing is not
novel. In fact, it has been advocated by many (Lee and Kitaoka,
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Fig. 5. Feature extraction and object segmentation. (A) Fluorescence image of labeled intracellular vesicles (taken from FIJI sample data; https://imagej.net/
Samples) after background removal (with rolling ball subtraction, 5-pixel radius) and denoising (using median filtering, 3-pixel radius). The results of three
different automatic intensity-threshold algorithms applied to A, are shown in B–D, corresponding to the methods described in Kittler and Illingworth (1986), Otsu
(1979) and Prewitt and Mendelsohn (1966), respectively. The image in C (enlarged views of area denoted by the red box, as shown in Ci), was then analyzed to
measure the average vesicle size using two segmentation methods to refine the objects to be considered (Cii and Ciii). Method 1 used a single iteration of
image opening, followed by a binary watershed operation (Cii), while Method 2 applied amaximum object size (<100 pixel2) andminimum circularity (>0.5) for any
object to be considered (Ciii). (E) There is an approximate 75% difference in the vesicle area obtained with Methods 1 and 2. Error bars are s.e.m.
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2018; Limare and Morel, 2011; National Academies of Sciences
and Medicine, 2019). Furthermore, there are a number of organized
efforts by the imaging science community dedicated to providing
resources and guidelines aimed at improving microscopy data
quality assurance and transparency, as exemplified by the OME
(Allan et al., 2012) and QUAREP-LiMi (Nelson et al., 2021
preprint) initiatives. Furthermore, in a companion Review, we
follow a similar approach to discuss how to properly report image
acquisition parameters (Heddleston et al., 2021). Indeed, the
increasing utilization of public data repositories such as OMERO
and Zenodo (Sicilia et al., 2017) can only be truly effective with
proper accompanying reporting of both image acquisition and
processing/analysis metadata. Unfortunately, advocacy alone has
thus far not garnered a sufficient response. In this Review and its
companion (Heddleston et al., 2021), we take a different approach to
this issue than mere advocacy.
Here, we assume that the widespread problem of under- and mis-

reporting of image processing steps in published literature is not
primarily driven by ill-intention to conceal pertinent information,
but due to the general lack of understanding and appreciation of how
these methods could affect the data, often in unintuitive ways. In
other words, we presume many end-users simply do not recognize
what matters, and therefore do not know precisely what to report.
Shaw and Hinchcliffe (2013) observed that the propagation of
computer-aided image analysis among life scientists often follows
an ‘oral’ tradition, facilitated mainly by colleagues or collaborators.
Another alarming occurrence is to see early-career scientists, such
as postdocs and graduate students, receiving little or no guidance at
all when performing image processing and analysis tasks. To further
exacerbate the challenge, many imaging facilities – where such
support should be readily available – do not receive sufficient
institutional and federal funding to offer image processing and
analyses as a core service, or training of their user base (Ferrando-
May et al., 2016). This problem frequently leads to a situation
wherein the biologist arbitrarily tries to process the image without a
logically designed strategy, resulting in either suboptimal results, or
in many cases, failure to achieve the experimental goals. Even more
consequentially, it may also inadvertently allow unethical image
manipulations to go undetected.

It is impractical and unreasonable to expect a full understanding
of the theories behind every image processing step. Here, we aim to
provide readers with an appreciation of how image data can be
affected by these digital operations, and to increase the awareness of
why it matters to report them. To help readers toward this goal, we
have summarized several major image-processing tasks, examples
of common algorithms used for each task, and the corresponding
parameters that should be reported (Table 1). While not
comprehensive, this table can aid readers in critically approaching
a broad range of image-processing algorithms with an eye toward
documenting and reporting the necessary elements to maintain
reproducibility. More importantly, this is expected to raise
awareness of the issues, so that researchers seek expert assistance
when in doubt, thereby potentially avoiding costly mistakes.

A myriad of strategies can aid researchers in tracking, properly
documenting and, ultimately, standardizing their image processing
workflows. While the simplest approaches can merely rely on
diligent notetaking and screenshot documentation, there are built-in
features in many software packages that can further aid in this
regard. For example, the OMERO platform (Allan et al., 2012) can
allow storage and tracking of not just imaging data, but extensive
annotations and metadata associated with both image acquisition
and digital transformations. ImageJ/FIJI (Rueden et al., 2017;
Schindelin et al., 2015; Schneider et al., 2012) features the ability to
record individual processing steps, together with the associated
parameters. This capability can be leveraged further to easily create
customized image processing macros that can be applied to large
data collections, thus increasing both the transparency, as well as
efficiency of an image processing workflow. Similar functions exist
in commercial software packages that allow researchers to store and
recall function histories for later reporting. In general, workflow
macros and custom software code should always be shared
whenever practical. We encourage readers to download a user-
fillable form (available as Table S1), based on Table 1, in order to
aid in summarizing their image processing workflows for later
reporting.

The need for accurate reporting will only become more acute as
machine learning techniques become more commonly applied to
perform a broad spectrum of image processing tasks (Arganda-

Table 1. Summary of the discussed image processing tasks, examples of common algorithms for each, and the requisite parameters to report for
each example

Processing task Common algorithms Parameter(s) to report

Background subtraction Rolling ball/rolling minimum Kernel size and shape
Gaussian smoothing and subtraction Kernel size and shape
FFT high pass filter Frequency cut-off values

Denoising Gaussian smoothing Kernel size and shape
Median filtering Kernel size and shape
Non-local means Noise sigma and smoothing value

Deconvolution Wiener deconvolution PSF and Wiener factor (1/SNR)
Richardson–Lucy PSF and number of iterations
Blind Estimated PSF (or none)

Intensity threshold Manual Intensity value or percentile
Automatic None
Local Varies

Segmentation Pixel connectivity 4 or 8 (2D images); 6, 18 or 26 (3D images)
Morphometric filtering Shape/size parameter(s) with upper and lower bounds
Binary operations Operations type (e.g. erosion, dilation), number and order

of implementations
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Carreras et al., 2017; Smal et al., 2010; Sommer and Gerlich, 2013;
Waller and Tian, 2015). This computational field, while often
extraordinarily powerful (Ounkomol et al., 2018), presents
formidable challenges regarding experimental reproducibility –
not least of which is due to their reliance on training datasets. This is
further complicated by the fact that the bases upon which machine
learning algorithms arrive at decisions are generally not easily
conveyed in non-specialist terms.
The end-user community, however, is not our sole target audience.

This systemic problem in reporting is, disappointingly, further abetted
by the poor implementation of the editorial guidelines set by the
journals themselves (Marques et al., 2020). There is unfortunately no
fool-proof mechanism that would serve as a perfect remedy to poor
reporting. However, it is helpful to identify a series of ‘checkpoints’
that would have to be breached to lead to an irreproducible
quantitative analysis – (1) lack of documentation of the image
processing workflow by the end-users during the experimentation
phase, (2) lack of oversight by someone knowledgeable to identify
the mis- or under-reporting during the manuscript preparation phase,
and (3) failure of the journals to assign the manuscript to at least one
reviewer who could guide the inclusion of this pertinent information
during the peer-review phase.
The root problem of under-documentation and under-reporting

by the end-users during the experimental phase can only be
remedied by better training and is therefore a loftier, longer term
goal. However, there are immediate actionable solutions that could
be taken by the journals to blunt the perpetuation of the problem.
Firstly, inquire during manuscript submission if the authors had
altered any of the images for analysis and whether all the image
processing workflow and parameters had been documented. While
this may not completely stem the problem, it would convey the
gravity of the matter. More importantly, the emphasis by journals
would encourage end-users to keep the record of image processing
workflow as detailed as they would a biochemical or molecular
biology assay. Secondly, the journal editors should assign the
manuscript to at least one reviewer who has the related expertise
when image data analysis either makes up a considerable proportion
of the data presented in the manuscript, or the key findings are
generated through image quantification. Importantly, ensuring
proper reporting of image processing workflows not only helps to
guard against unintended non-reproducibility, but can also serve as
a valuable means in identifying and deterring deliberate
malfeasance before publication of a study. Such instances, while
comparatively rare, arguably damage public confidence in the
scientific method far more than honest mistakes. A digital image
represents an information-rich data source, from which valuable
quantitative biological insights can be derived. However, simply
demanding that modern biological data be more quantitative rather
than descriptive is inadequate without the ability for independent
validation. Scientific data are only as credible and valuable as they
can be verified. To overlook the importance of documenting
accurate and sufficient image processing details subsequently
renders the published results unverifiable. This oversight,
therefore, undermines all the time, effort and resources that go
into generating the data for a publication, and severely diminishes
the value of the scientific discovery.
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